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of Anisotropic Optical Waveguides with
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Abstract — An approximate scalar finite-element program for the analy-
sis of anisotropic optical waveguides having a permittivity. tensor with
nonzero off-diagonal elements is described. In this approach, the nonphysi-
cal spurious solutions which are included in the solutions of the earlier
vectorial finite-element method in an axial-components formulation do not
appear. Numerical examples on an anisotropic dielectric rectangular wave-
guide composed of a uniaxial medium are given. Our results for the
waveguide whose optic axis lies in the plane (xy-plane) normal to the
direction (z -axis) of propagation agree well with the results of the vectorial
wave analysis ‘using the variational method. We also demonstrate the
application of this approach by analyzing the anisotropic dielectric rectan-
gular waveguide whose optic axis lies in the xz- or yz-plane.

1. INTRODUCTION®

EVERAL METHODS FOR the analysis of a three-
dimensional optical waveguide such as shown in Fig. 1
(where ¢ is the height or depth and W is the width) have
been proposed [1] and the vectorial finite-element method
in an axial components (E, — H,) formulation, which en-
- ables one to compute accurately the mode spectrum of a
waveguide .with arbitrary cross section, is widely used
[2]-[8]. However, the vectorial finite-element solutions have
been known to include nonphysical solutions [2]-[8]. If one
wants to compute a set of eigenmodes, it is difficult and
very cumbersome to distinguish between the spurious and
the physical modes of the guides. The cause of these
spurious modes is believed to be in the indefinite nature of
the E, — H, variational formulation [6]-[8]. In addition,
the vectorial finite-element method can be applied only to
anisotropic waveguides with a diagonal permittivity tensor
131, [7].

Recently, Steinberg and Giallorenzi [9] have formulated
an approximate coupled mode treatment based on the
Marcatili method [10] for a uniaxial waveguide whose optic
axis lies in the xz-plane, and Ohtaka [11] has analyzed a
uniaxial waveguide whose optic axis lies in the xy-plane
using the variational method. Mabaya, Lagasse, and
Vandenbulcke [7] have presented an approximate scalar
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Fig. 1. Three-dimensional optical waveguide geometry.

finite-clement formulation for the analysis of isotropic
optical waveguides. This approach has as its main ad-
vantages: the smaller matrix dimensions, less computer
time, no spurious modes (because functionals based on the
scalar approximation are positive definite [7]), and the
capability of easily computing higher order modes [7], {12],
[131.

In this paper, this approximate scalar finite-clement
method is extended to the anisotropic waveguides having a
permittivity tensor with nonzero off-diagonal élements. For
two-dimensional waveguides (9 /dx = 0) [14]-[17], the ma-
trix equation derived by this approach is reduced to the
exact expression for two-dimensional guided modes [18],
[19]. In order to study the accuracy of the method, various
isotropic dielectric waveguides are analyzed and the results
obtained are compared with previously published results
[5], [10], [20]. Then, numerical examples on an anisotropic
dielectric rectangular waveguide composed of a uniaxial
medium .are given. Our results for the waveguide whose
optic axis lies in the xy-plane agree well with the results of
the vectorial wave analysis using the variational method
[11]. We also demonstrate the application of this approach
by analyzing the anisotropic dielectric rectangular wave-
guide whose optic axis lies in the xz- or yz-plane.
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IL.

We consider a three-dimensional anisotropic waveguide
in Fig. 1 having a permittivity tensor with all nonzero
off-diagonal elements ¢, K, , (i, j=x, y, z) and the perme-
ability of free space p,, where ¢, is the permittivity of free
space and K|, is the relative permittivity.

Maxwell’s equations are, in component form

APPROXIMATE BASIC EQUATIONS

OE, /0y + jk.E, = — jou,H, (1)

— jk,E, — 8E,/0x = — jop,H, (2)
JE,/9x — 0E, /8y =~ jop,H, (3)
dH,/dy + jk,H,= juD, (4)

— jk,H,— 9H,/9x = joD, (5)
dH,/dx—dH, /3y = jwD, (6)
H,=(1/jk,)(9H, /dx+ 0H,/dy) (7)
D, =(1/jk.)(9D,/9x+ 3D, /9y) (8)

where E, H, and D, are the electric field, the magnetic
field, and the electric flux density, respectively, and w and
k, are the angular frequency and the wavenumber in the
z-direction, respectively.

The constitutive relations are

Dx=€0(KxxEx+nyEy+szEz) (9)
D,=¢ (K, E +K,E +K,_E,) (10)
D:=€0(szEx+KyzEy+KzzEz)' (11)

We assume |K, | < K, (i+# j) and a small index varia-
tion in the lateral (x) direction, then we may approxi-
mate as

K, d/3x=0, i#J. (12)
Considering (12), from (2) and (11) we obtain
1 (. 1 D,
H,= Tore (]szx + K. Ox ) (13)

Substituting (8) into (13) and considering (9), (10), and
(12), we obtain

H = ik, E LI e aEx+1< 9E,
Yo jop, 7 Jk,K,, dx \** dx oy |
(14)
We write (3)
1 (dE, OE
z‘JTuO(T')TW) (13)

Considering (10)-(12) and eliminating E, between (5)
and (6), we obtain
0H,

1 1
Ey - jwf() ;(]szzsz + Kzza_ - Kyz 3)/

—FE
a

X"

(16)

8H)b
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Substituting (7) into (16), we obtain

1 K, 9 [dH 0H
E=———|; xSy
) ]weoa[]kKHJrk 8x(8x+8y)
dH, | b
_sza—y}_—a_Ex' (17)

Considering (10)-(12) and eliminating E, between (5)

and (6), we obtain
1 1 dH, dH, c
EZ—_jch;( Yody ~ Ky dax BRACLEE )“EEX
(18)
where

a=K, K, - K, (19a)
b=K, K, -K,K, (19b)
c=K. K, -K, K,.. (19¢)
Substituting (14), (15), (17), and (18) into (4), consider-

ing (12) and neglecting the terms of E, in the same manner
as in the isotropic case [7], [12], we obtain

Ko d (26}, 9 (20
K, ax dy\dy
2 _ b _ < 2]
+[k0(Kxx nya sza) kz (P
— kok, ¢+ kS ¥ o, (20)

ady

Similarly, subst1tut1ng (17) and (18) into (1) and neglect-
ing the terms of H,, in the same manner as in the isotropic
case [7], [12], we obtam

e T )
+(k3—k§%)¢—jkh . g"’ kok, ¢ 0 (21)
e 4=, 22)
Y=ol (23)
kO =W EOlu() (24)
Mo = o/ - (25)
If the wavegulde is 1sotr0plc namely K,, =K, =K, =

n? and K, =K,, =0, (20) is reduced to the Helm-
holtz equatlon for the TE, mode (E,=0) and (21) is
reduced to that for the TM mode (H =(0) derived by
Yasuura, Shimohara, and Mlyamoto [20], where n is the
refractive index. In the case of an infinite slab waveguide
(d/dx =0, two-dimensional waveguide) [14]-[17], the ap-
proximate basic equations (20) and (21) are reduced to the
exact equations for the two-dimensional guided modes.

IIL

The finite-element formulation is based on the following
variational expression [2], [3], [5]-[8], [18] for previous

FINITE-ELEMENT APPROACH
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Fig. 2. 2nd-order triangular element.

equations (20) and (21):

831=0 (26)
where
K,x d¢* d¢ | 3¢* d¢
I= ff( K, ox ax T dy 3y
b c
+[k3—k§(Kxx—ny;—K ;)]w
Koot ov Ky oy* oy (oK s
T2 T x T e dy (’)y+(kz a ko)"b*l‘b
Kye [ o 0% _ 9%
W AP
+kok, = ww+¢%)
(9 *
(¢* a}P a‘P qb))dxdy. (27)

Here, © is the cross section of the guide and the asterisk
denotes complex conjugate.

Dividing the cross section of the guide into a number of
2nd-order triangular elements as shown in Fig. 2, ¢ in (22)
and ¢ in (23) within each element are defined in terms of

¢, and ¢, at the nodal points k (k=1,2,---,6), respec-
tively, as follows:
$={N}"{s}. (28)
v={N}"{y}. (29)
where
{0} = [o1005040595]" (30)
{9} o= [¥atadstatsiel” (31)
{N}= [N1N2N3N4N5N6]T- (32)

Here T, {-}, and {- }Tdenote a transpose, a column vector,
and a row vector, respectively, and the shape functions N;
to N, are given by

N, =L,(2L,-1) (33a)
N,=L,(2L,-1) (33b)
N,=L1,(21,-1) (33c)
N,=4L,L, (33d)
N;=4L,L, (33¢)
Ny=4L,L, (331)

with the area coordinates L,, L,, and L, [2], {5]. The
relation equation between the area coordinates and Carte-
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sian coordinates is given by
X x1 X x]f L
[y =|n N »nllLl (34)
1 1 1 1L,

where (x,, y,) are the Cartesian coordinates of the vertex /
(1=1,2,3) of the triangle.

Both ¢ and ¢ fields exist in the medium (or media)
surrounding the optical waveguide, and these fields extend
to infinity. One method for modeling the surround is
imposing an artificial zero boundary condition for ¢ and ¢
at a large enough distance from the guide. This method has
as an advantage its simplicity and is widely used [2]-[8],
[12], [13]. Using this zero boundary condition and sub-
stituting (28) and (29) into (27), from (26) we obtain the
following global matrix equation:

[4] [B]]|{¢}
{W1IDJL¢J=”} e
where
a{N}a{N} NILIYICoN
[A]_fo( 2z,e 0x dy dy
[ K e )]
-{N}{N}T)dxdy (36a)

(21-L [ [ [kab 20y )7
- —{N}a{ J )dxdy (36b)

[d=2/4@wggNuNf

+ jko Z 8{N} ——{N} )dxdy (36¢)
3{N} 3{N}
dx

zzZ,¢€e

[m—sz(e

yy,e ‘Q{N} a{N}T
a, ay dy

yze[{N}a{N} H{N}{N} }

€

+ jk,

[kz-kz—”—i]{N}{N} ) dxdy. (36d)
Here the summation X, extends over all different elements,
the components of {¢} and {4y } vectors are the values of
E, and nyH, at nodal points in £, respectively, and {0} is
a null vector.

For an anisotropic waveguide with a diagonal permittiv-
ity tensor, namely K, = K,, = K. =0, (35) is reduced to
the equations derived by Koshiba, Hayata, and Suzuki [12].
In this case, [ B]=[C]=[0] (where [0] is a zero matrix) and
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equations [A]|=0 and [[B]| =0 determine the dispersion
characteristics for the E), and E), modes [10] in the
waveguides with a diagonal permittivity tensor, respec-
tively. The main field components of the E, modes are E,
and H, while those of the E}, modes are H, and E, [10].
The subscripts p and g are used to designate the number
of maxima of the dominant field in the x- and y-direc-
tions, respectively. In the case of a two-dimensional wave-
guide (3 /dx =0), (35) gives the exact expression for two-
dimensional guided modes [18], [19].

In order that a nontrivial solution of (35) may exist

(4] [B]
(] (o] 7

must hold. This equation is the eigenvalue (dispersion)
equation which determines the dispersion characteristics
for the guided modes in anisotropic waveguides having a
permittivity tensor with nonzero off-diagonal elements. In
the present analysis, the Cholesky method, the House-
holder’s method, the method of bisections, and the QR
method are suitably used for solving (37).

=0

IV. CoMPUTED RESULTS

Equation (12) and neglect of E, and H, in (20) and (21)
may not be valid for the neighborhood of cutoff frequency
and for the higher order modes. Therefore, it is necessary
to study the accuracy of the method.

First we consider isotropic dielectric waveguides which
are analyzed by many researchers using a variety of meth-
ods [1]-[13}, [20]. Fig. 3 shows the dispersion character-
istics for the fundamental E{; mode in an embossed
waveguide and in a channel waveguide, where the index
variation in the lateral direction of the channel waveguide
is smaller than that of the embossed waveguide and the
finite-element model uses 84 elements and 195 nodal points
in one-half of the cross section. For the embossed wave-
guide, our results (solid lines) deviate from the results
(dots) of the vectorial finite-element method [5] in the
neighborhood of cutoff frequency when the width W/t is
narrow (W/r=1 and 2). On the other hand, for the
channel waveguide with W/r =2, agreement between our
results (dashed line) and the results (circles) of the vectorial
finite-element method is good over a wide range of fre-
quencies. In [12], the approximate scalar finite-element
method is used for the analysis of an anisotropic channel
waveguide with a diagonal permittivity tensor and a 1-per-
cent variation of the ordinary and extraordinary refractive
indices of LiNbO;, and the results obtained agree very well
with the results of the vectorial finite-element method [3].

Fig. 4(a) shows the dispersion characteristics for the E,
and EJ, modes in a rib waveguide, where the finite-ele-
ment model employs 180 elements and 399 nodal points in
one-half of the cross section. The EJ; (or E};) and E; (or
E4) modes are the lowest modes of the symmetric (p is
odd) and antisymmetric (p is even) E; (or E},) modes,
respectively. Our results for these modes agree well with
the results of the mode-matching method [20]. However,
our results for the higher order £5; and EJ modes are not
in good agreement with the results of the mode-matching
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method, especially near the cutoff frequencies. Fig. 4(b)
shows the dispersion characteristics for the fundamental

{1 mode in the rib waveguide when the width W/t is
altered. When the width W/¢ becomes narrow, our results
deviate from the results (dots) of the mode-matching
method. But our results are closer to the results of the
mode-matching method than those (circles) of Marcatili’s
approximate analytical approach [10]. From Figs. 3 and 4,
we may conclude that the approximate scalar finite-ele-
ment results are more accurate for the lower order modes
in the waveguide of a small index variation in the lateral
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(x) direction or for those in the waveguide of a large
width-to-height ratio. However, for the waveguide of a
small width-to-height ratio and near the cutoff frequencies,
the accuracy of the method is questionable. It seems that
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variations in accuracy are due to the scalar approxima-
tions.

As for the second example, we consider an anisotropic
dielectric rectangular waveguide composed of a uniaxial
medium. A typical division of this waveguide into 2nd-order
triangular elements is shown in Fig. 5, where the number of
elements and of nodal points is 80 and 169, respectively.
Figs. 6-8 show the dispersion characteristics for the guided
modes in the anisotropic dielectric rectangular waveguides
surrounded by an isotropic medium of refractive index
v2.05, where the ordinary and extraordinary refractive
indices of a rectangular core are v2.31 and v2.19, respec-
tively. The optic axis ¢ in Figs. 6, 7, and 8 lies in the
xy-plane at an angle 6 = 45° from the x-axis (K, # 0, K,
=K, =0), in the xz-plane at an angle § = 45° from the
z-axis (K,,#0,K,, =K, =0), and in the yz-plane at an
angle §=45° from the z-axis (K,,#0,K,, =K, =0),
respectively. Modes are designated as E;, (E,,-like mode)
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if at a frequency near cutoff the electric field E, is domi-
nant and as E2, (E;-like mode) if at a frequency near
cutoff the magnetic field H, is dominant. As we can see
from (35) and (36), in general, there is coupling between
the field components £, and H, via the off-diagonal
clement X, . In the case of K,, #0 and K,, =K, , =0 in
Fig. 8, the matrices [B] and [C] in (35) vanish, and the
E; -modes group and the E) -modes group arc separable
in the present approach. For the waveguide in Fig. 6, the
region ABCD in Fig. 5 should be divided into elements
because of the lack of symmetry of the field. The wave-
guide in Fig. 7 or 8 has a plane of symmetry, y=¢/2 or
x = 0, respectively. Therefore, for the waveguide in Fig. 7
or 8 the region ABGH or AEFD in Fig. 5 is divided into
elements, respectively.

Ohtaka [11] has analyzed the anisotropic dielectric rect-
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angular waveguide with W =2t whose optic axis lies in the
xy-plane using the variational method. Comparison of our
results for the waveguide in Fig. 6(a) with the results of the
vectorial wave analysis using the variational method shows
good agreement. This fact demonstrates the reliability of
the present method. With reference to Figs. 6-8, effects of
the direction of the optic axis and the guide-width on the
dispersion characteristics of the guided modes can be ob-
served. In the waveguide whose optic axis lies in the xy- or
yz-plane, the fundamental mode is the E;Y mode and in the
waveguide whose optic axis lies in the xz-plane the funda-
mental mode is E}; mode. When the guide-width is made
narrower, the cutoff frequency of each mode becomes
higher and the frequency range of single-mode operation in
each class of modes (the E; -like modes and the E},-like
modes) becomes wider.

The nonphysical spurious solutions do not appear in
Figs. 3, 4, and 68 because of the positive definite nature
of 27).

V. CONCLUSIONS

An approximate scalar finite-element method was devel-
oped for the analysis of three-dimensional anisotropic opti-
cal waveguides having a permittivity tensor with nonzero
off-diagonal elements. In this approach, the nonphysical
spurious solutions which are included in the solutions of
the vectorial finite-element method in an axial components
formulation do not appear.

The present approach may be applicable to the analysis
of three-dimensional anisotropic diffused optical wave-
guides.

In the present approach, the artificial zero boundary
condition is used at a large enough distance from the guide
(bounded structure), so the entire mode spectrum is a
discrete set of modes. The problem of how to deal with an
open guided-wave structure (unbounded structure), includ-
ing the continuous spectrum hereafter still remains.
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