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Abstract —An approximate scafar finite-element program for the anafy-

sis of anisotropic opticaf wavegoides having a permittivity tensor with
nonzero off-diagonal elements is deseribed. In this approach, the nonphysi-
cal spurious solutions which are included in the solutions of the earlier

vectoriaf finite-element method in an axial-components formulation do not

appear. Numericaf examples On an anisotropic dielectric rectangular wave-

guide composed of a uniaxial medium are given. Our resufts for the

waveguide whose optic axis lies in the plane ( xy -plane) normal to the

direction (z-axis) of propagation agree well with the results of the vectoriaf

wave analysis ‘using the variational method. We also demonstrate the

application of this approach by analyzing the anisotropic dielectric rectan-
gular waveguide whose optic axis lies in the xz - or yz -plane.

I. INTRODUCTION

sEVERAL METHODS FOR the analysis of a three-

dimensional optical waveguide such as shown in Fig. 1

(where t is the height or depth and W is the width) have

been proposed [1] and the vectorial finite-element method

in an axial components (E, – Hz) formulation, which en-

ables one to compute accurately the mode spectrum of a

waveguide with arbitrary cross section, is widely used

[2]–[8]. However, the vectori~ finite-element solutions have

been known to include nonphysical solutions [2]–[8]. If one

wants to compute a set of eigenmodes, it is difficult and

very cumbersome to distinguish between the spurious and

the physical modes of the guides. The cause of these

spurious modes is believed to be in the indefinite nature of

the E, – Hz variational formulation [6]–[8]. In addition,

the vectorial finite-element method can be applied only to

anisotropic waveguides with a diagonal permittivity tensor

[3], [7].

Recently, Steinberg and Giallorenzi [9] have formulated

an approximate coupled mode treatment based on the

Marcatili method [10] for a uniaxial waveguide whose optic

axis lies in the xz-plane, and Ohtaka [11] has analyzed a

uniaxial waveguide whose optic axis lies in the xy-plane

using the variational method. Mabaya, Lagasse, and

Vandenbulcke [7] have presented an approximate scalar
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Fig. 1. Three-dimensional optical waveguide geometry,

finite-element formulation for the analysis of isotropic

optical waveguides. This approach has as its main ad-

vantages: the smaller matrix dimensions, less computer

time, no spurious modes (because functional based on the

scalar approximation are positive definite [7]), and the

capability of easily computing higher order modes [7], [12],

[13].

In this paper,, this approximate scalar finite-element

method is extended to the anisotropic waveguides having a

perrnittivity tensor with qonzero off-diagonal elements. For

two-dimensional waveguides ( d/dx = O) [14]–[17], the ma-

trix equation derived by this approach is reduced to the

exact expression for two-dimensional guided modes [18],

[19]. In order to ~study the accuracy of the method, various

isotropic dielectric waveguides are analyzed and the results

obtained are compared with previously published results

[5], [10], [20]. Then, numerical examples on an anisotropic

dielectric rectangular waveguide composed of a uniaxial

medium are given. Our results for the waveguide whose

optic axis lies in the xy-plane agree well with the results of
the vectorial wave analysis using the variational method

[11]. We also demonstrate the application of this approach

by analyzing the anisotropic dielectric rectangular wave-

guide whose optic axis lies in the XZ- or yz-plane.
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II. APPROXIMATE BASIC EQUATIONS Substituting (7) into (16), we obtain

We consider a three-dimensional anisotropic waveguide
11

in Fig. 1 having a permittivity tensor with all nonzero EY=–-
[ ‘zz?~+%l

– jkZK..H. + ~ dX

off-diagonal elements c~KZ, (i, j = x, y, z) and the perme-
J&X. a

ability of free space PO, where COis the permittivity of free

space and K,, is the relative permittivity. - KYZ$
x

1

– %r. (17)

Maxwell’s equations are, in component form
Considering (10)-(12) and eliminating ~, between (5)

dEZ/dy + jkZEY = – jupoHX (1) and (6), we obtain

– jk, EX – dEZ/dx = – japoHv

(

(2) E,= 1 1 K ‘H’ K,, ~ jk.KY,H. - ~E
juco a Y.v ~ ~

13Ey/dx – C?EX/dy = – jupoHz
.

)
x

(3)

dHZ/dy + jkZHY = jaDX (4)
(18)

where
– jkZHX – dHZ/dx = juDv (5) a= KYYKzz– K2yz (19a)

dHY/dx – i3HX/dy = jaDz (6) b = ‘XV’== – KX.KY, (19b]

Hz= (1/jkz)(dHX/8x + 6’HY/dy) (7) c = ‘X= KYY – KXY KY:. (19C)

D== (l/jkz)( dDX/8X + dDY/~Y) (8) Substituting (14), (15), (17), and (18) into (4), consider-
ing (12) and neglecting the terms of E.p in the same manner

where E,, H,, and D, are the electric field, the magnetic as in the isotropic case [7], [12], we obtain

field, and the electric flux density, respectively, and a and ‘

k: are the angular frequency and the wavenumber in the
~%(%)++(%)

z-direction, respectively.

The constitutive relations are

DX =to(KXXEX + KXYEY + GE.) (9)

Dy = Co(KxYE. + KpyE., + ‘y#z) (lo)

[(+k;’ xx
11

–KXY; –KXZ: –k; +

–kokz~~+ jkog~=O.
a dy

(20)

D:= CO(KXZEX + K,ZEy + KZZEZ). (11) Similarly, substituting (17) and (18) into (1) and neglect-

ing the terms of H.v in the same manner as in the isotropic

We assume IKZ, I << K,, (i # j) and a small index varia-
case [7], [12], we obtain

tion in the lateral (x) direction, then we may approxi- K

mate as
~%(%)+~(%~-jkz~++jkO~+)

KIJd/dx = O, i+j. (12)

Considering (12), from (2) and (11) we obtain (
~ $-jkz~$+ k:–k;!!i

)

– kokz:+ = O (21)

1

(

1 aD
Hy=~ jkzEX + — ~

)

(13) where
JU~o Eo ‘Zz ax “

Substituting (8) into (13) and considering (9), (10), and

(12), we obtain

(22)

(23)

(24)

1

[ (-

1 _d_ ~ 13EX+K dEY

-)1
To’$iz. (25)

H, = -
J(L)~o jkzEx + jkzKzZ dx “ 3X YY~”

Y If the waveguide is isotropic, namely KXX = K,v = KZ2 =

We write (3)

‘=*(%3
Considering (10)-(12) and eliminating

and (6), we obtain

(14) n’ and KX,, = KX= = KY:= O, (20) is reduced to “the Helm-
holtz equation for the TEJ, mode ( EY = O) and (21) is
reduced to that for the TMY mode (~v = O) derived by

Yasuura, Shimohara, and Miyamoto [20], where n is the
(15) refractive index. In the case of an infinite slab waveguide

( d/dx = O, two-dimensional waveguide) [14] -[17], the ap-
Ez between (5) proximate basic equations (20) and (21) are reduced to the

exact equations for the two-dimensional guided modes.

~).bc III. FINITE-ELEMENT APPROACH(Ey= –&~
dHZ

J(J60 a JkzKzzHx + ‘,. ax—–’Y. j~]–;L.x.

The finite-element formulation is based on the following

(16) variational expression [2], [3], [5]-[8], [18] for previou;
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Fig. 2. 2nd-order triangular element.

equations (20) and (21):

81=0

where

[( )1

+ k; – k; KXX – KXY: – KXZ: +*4

sian coordinates is given by

[1[

x xl

Y=yl
11

589

X2 X3 Ll

1[ 1Y2 Y3 G (34)

1 1 L~

where (x,, yl) are the Cartesian coordinates of the vertex 1

(1= 1,2, 3) of the triangle.

Both ~ and ~ fields exist in the medium (or media)

surrounding the optical waveguide, and these fields extend

(26) to infinity. One method for modeling the surround is

imposing an artificial zero boundary condition for @ and ~

at a large enough distance from the guide. This method has

as an advantage its simplicity and is widely used [2]–[8],

[12], [13]. Using this zero boundary condition and sub-

stituting (28) and (29) into (27), from (26) we obtain the

following global matrix equation:

[A]=zJ~,(::~a{:}T+~a{:}T
e

—

Hk; KXX, = – KXY, e: – KXZ, =:
)1

– k:
e e

(27)

)

.{ N}{N}T dxdy (36a)

Here, Q is the cross section of the guide and the asterisk

denotes complex conjugate. [B]=xJ~( ,ko,kZ:{N}{N}’

Dividing the cross section of the guide into a number of e e

2nd-order triangular elements as shown in Fig. 2, 0 in (22) a{N}T
and $ in (23) within each element are defined in terms of –jko~{N} 8Y

)
dxdy (36b)

@k and +k at the nodal points k (k= L z,”””, 0 rwec-

tively, as follows:
(28) [c]=~~~ (kC,kZ${N};N}’

@={ N} T{@}e e e

t={ N} T{IP}e (29) “~{ N} ‘) dxdy (36c)+ jko; 8Y

where

{+} ,= [%$2+3+4+5+6]T (30) [D]=xJ~ (I&+#eayT

{+} e = [+ I$2+3$4+5$6]T

e .

(31)
K ,Y,, ,?{N} 8{N}T

{N} = [N1N2N,N4N5N6]T. (32) +—-—
ae ay ay

Here T, {”}, and { o}~ denote a transpose, a column vector,

[

a{N}T a{N}
and a row vector, respectively, and the shape functions N1 + jkz~f {N} 8Y -—{N}’]

to N6 are given by e
ay

N1 = L1(2L1 –1)

[ 1

(Ssa) - k:-k:~ {N}{ N} ’)dxdy. (36d)

N2 = L2(2LZ –1) (33b) e

N,= L~(2L~ –1) (33C)
Here the summation Z. extends over all different elements,

the components c)f { @} and { ~ } vectors are the values of
N4 = 4LIL2 (33d) EX and ~oHX at nodal pointsinQ, respectively, and {O} is

N5 = 4L2L3

N6 = 4L3Ll

(33e) a null vector.
For an anisotropic waveguide with a diagonal permittiv-

(33f) ity tensor, namely Kx. = Kx= = Kvz = O, (35) is reduced to

with the area coordinates Ll, Lz, and Lq [2], [5]. The the equations detilved by KoShiba:Hayata, and SUZUki [12].

relation equation between the area coordinates and Carte- In this case, [B]== [C]= [0] (where [0] is a zero matrix) and
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equations IIA ] \ = O and 1[B] I = O determine the dispersion

characteristics for the li;~ and E~~ modes [10] in the
waveguides with a diagonal permittivity tensor, respec-

tively. The main field components of the li;~ modes are EX

and HY, while those of the E:q modes are HX and EY [10].

The subscripts p and q are used to designate the number

of maxima of the dominant field in the x- and y-direc-

tions, respectively. In the case of a two-dimensional wave-

guide (O/Ox = O), (35) gives the exact expression for two-

dimensional guided modes [18], [19].

In order that a nontrivial solution of (35) may exist

[A] [B] no

[C] [D]
(37)

must hold. This equation is the eigenvalue (dispersion)

equation which determines the dispersion characteristics

for the guided modes in anisotropic waveguides having a

perrnittivity tensor with nonzero off-diagonal elements. In

the present analysis, the Cholesky method, the House-

holder’s method, the method of bisections, and the QR

method are suitably used for solving (37).

IV. COMPUTED RESULTS

Equation (12) and neglect of EY and HY in (20) and (21)

may not be valid for the neighborhood of cutoff frequency

and for the higher order modes. Therefore, it is necessary

to study the accuracy of the method.

First we consider isotropic dielectric waveguides which

are analyzed by many researchers using a variety of meth-

ods [1]–[1 3], [20]. Fig, 3 shows the dispersion character-

istics for the fundamental EL mode in an embossed

waveguide and in a channel waveguide, where the index

variation in the lateral direction of the channel waveguide

is smaller than that of the embossed waveguide and the

finite-element model uses 84 elements and 195 nodal points

in one-half of the cross section. For the embossed wave-

guide, our results (solid lines) deviate from the results

(dots) of the vectorial finite-element method [5] in the

neighborhood of cutoff frequency when the width W/r is

narrow ( W’/r = 1 and 2). On the other hand, for the

channel waveguide with W/t = 2, agreement between our

results (dashed line) and the results (circles) of the vectorial

finite-element method is good over a wide range of fre-

quencies. In [12], the approximate scalar finite-element

method is used for the analysis of an anisotropic channel

waveguide with a diagonal permittivity tensor and a l-per-

cent variation of the ordinary and extraordinary refractive

indices of LiNb03, and the results obtained agree very well

with the results of the vectorial finite-element method [3].

Fig. 4(a) shows the dispersion characteristics for the E~g

and E:q modes in a rib waveguide, where the finite-ele-

ment model employs 180 elements and 399 nodal points in

one-half of the cross section. The Efl (or EL) and E:l (or

E;) modes are the lowest modes of the symmetric (p is

odd) and antisymmetric (p is even) E;q (or E:q) modes,

respectively. Our results for these modes agree well with

the results of the mode-matching method [20]. However,

our results for the higher order E:l and El modes are not

in good agreement with the results of the mode-matching

10
.;.

o ● F!n!te-e[ement method+
( fu[l vectortal analysls)

Y
.:’ — Present analysis---

,
-%

E/l modez“
-.
.

=05
no--wq

01 ,!/ f I A [

-o 10 20 30
kOt(n~. n~)]]2 In

Fig. 3. Dispersion characteristics for the embossed waveguide and the
channel waveguide.
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(b) k. h

Fig. 4. Dispersion characteristics for the rib waveguide. (a) ll;q, E;q
modes. (b) Efl mode.

method, especially near the cutoff frequencies. Fig. 4(b)

shows the dispersion characteristics for the fundamental

E: mode in the rib waveguide when the width W/t is

altered. When the width W/t becomes narrow, our results

deviate from the results (dots) of the mode-matching

method. But our results are closer to the results of the

mode-matching method than those (circles) of Marcatili’s

approximate analytical approach [10]. From Figs. 3 and 4,

we may conclude that the approximate scalar finite-ele-

ment results are more accurate for the lower order modes

in the waveguide of a small index variation in the lateral
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Fig. 6. Dispersion characteristics for the anisotropic dielectric rectangu-
lar waveguide whose optic axis lies in the xy-plane. (a) W= 2t.
(b) w= 41.

(x) direction or for those in the waveguide of a large

width-to-height ratio. However, for the waveguide of a

small width-to-height ratio and near the cutoff frequencies,

the accuracy of the method is questionable. It seems that

231-

23 -

“-
~o

-N
:

2.2 -

21 -

2.05 –
o 50 10.0 15.0

kot
(b)

Fig. 7. Dispersion characteristics for the anisotropic dielectric rectangu-
lar waveguide whose optic axis lies in the xz-plane. (a) w= 2t.

(b) w= 4t.

variations in accuracy are due to the scalar approxima-

tions.

As for the second example, we consider an anisotropic

dielectric rectangular waveguide composed of a uniaxial

medium. A typical division of this waveguide into 2nd-order

triangular elements is shown in Fig. 5, where the number of

elements and of nodal points is 80 and 169, respectively.

Figs. 6-8 show the dispersion characteristics for the guided

modes in the ani sotropic dielectric rectangular waveguides

surrounded by an isotropic medium of refractive index

~, where the ordinary and extraordinary refractive
indices of a rectangular core are ~ and ~, respec-

tively. The optic axis c in Figs. 6, 7, and 8 lies in the

xy-plane at an angle 6 = 450 from the x-axis (KXY # O, K,=

= KY== O), in the xz-plane at an angle O =450 from the

z-axis (KXZ # O, KXY = KY== O), and in the yz-plane at an

angle 6 = 450 from the z-axis (K;= + O, Kxy = Kxz = O),
respectively. Modes are designated as E:q ( E;4-like mode)



592 IEEETRANSACTIONSON MICROWAVETHEORYAND TECHNIQUES,VOL. MTT-32, NO. 6, TUNE1984

23 -

“-
x“
-N

5

22 -

21 -

2050~
50 100

(a)

(b)

1
150

kOt

Fig. 8. Dispersion characteristics for the anisotropic dielectric rectangu-
lar waveguide whose optic axis lies in the J7Z-pkUK, (a) W/= 2 t
(b) w= 41.

if at a frequency near cutoff the electric field EX is domi-

nant and as E~~ ( E;~-like mode) if at a frequency near

cutoff the magnetic field HX is dominant. As we can see

from (35) and (36), in general, there is coupling between

the field components EX and H, via the off-diagonal

element K,J. In the case of KY= + O and KXY = KXZ = O in

Fig. 8, the matrices [B] and [C] in (35) vanish, and the

E;~-modes group and the E;~-modes group are separable

in the present approach. For the waveguide in Fig. 6, the

region ABCD in Fig. 5 should be divided into elements

because of the lack of symmetry of the field. The wave-

guide in Fig. 7 or 8 has a plane of symmetry, y = t/2 or

x = O, respectively. Therefore, for the waveguide in Fig. 7

or 8 the region ABGH or AEFD in Fig. 5 is divided into

elements, respectively.

Ohtaka [11] has analyzed the anisotropic dielectric rect-

angular waveguide with W = 2t whose optic axis lies in the

xy-plane using the variational method. Comparison of our

results for the waveguide in Fig. 6(a) with the results of the

vectorial wave analysis using the variational method shows

good agreement. This fact demonstrates the reliability of

the present method. With reference to Figs. 6–8, effects of

the direction of the optic axis and the guide-width on the

dispersion characteristics of the guided modes can be ob-

served. In the waveguide whose optic axis lies in the xy - or

yz-plane, the fundamental mode is the E; mode and in the

waveguide whose optic axis lies in the xz-plane the funda-

mental mode is Efi mode. When the guide-width is made

narrower, the cutoff frequency of each mode becomes

higher and the frequency range of single-mode operation in

each class of modes (the E;~-like modes and the E;~-like

modes) becomes wider.

The nonphysical spurious solutions do not appear in

Figs. 3, 4, and 6–8 because of the positive definite nature

of (27).

V. CONCLUSIONS

An approximate scalar finite-element method was devel-

oped for the analysis of three-dimensional anisotropic opti-

cal waveguides having a perrnittivity tensor with nonzero

off-diagonal elements. In this approach, the nonphysical

spurious solutions which are included in the solutions of

the vectorial finite-element method in an axial components

formulation do not appear,

The present approach may be applicable to the analysis

of three-dimensional anisotropic diffused optical wave-

guides.

In the present approach, the artificial zero boundary

condition is used at a large enough distance from the guide

(bounded structure), so the entire mode spectrum is a

discrete set of modes. The problem of how to deal with an

open guided-wave structure (unbounded structure), includ-

ing the continuous spectrum hereafter still remains.
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